Канальный сообщение. Частотное, временное и фазовое разделение сигналов (каналов)

Частотное разделение сигналов (каналов)

Проследим основные этапы формирования многоканального сигнала при частотном разделении каналов (ЧРК). Сначала в соответствии с передаваемыми сообщениями первичные сигналы a i (t ), имеющие энергетические спектры , ,…, модулируют поднесущие частоты каждого канала. Эту операцию выполняют модуляторы , , … , канальных передатчиков. Полученные на выходе частотных фильтров , , … , спектры канальных сигналов занимают соответственно полосы частот , ,…, (рис.9.2).


Рис. 9.2. Схема частотного уплотнения и разделения каналов

Будем считать, что каждое из подлежащих передаче сообщений a i (t ) занимает полосу частот стандартного ТЧ-канала . В процессе формирования группового сигнала каждому канальному сигналу S i (t ) отводится неперекрывающаяся со спектрами других сигналов полоса частот (рис. 9.3). Тогда общая полоса частот N -канальной группы будет равна

. (9.8)


Рис.9.3 Преобразование спектров в системе с ЧРК

Считая, что применяется однополосная модуляция, а каждый канальный сигнал занимает полосу частот

для спектра группового сигнала получим

. (9.10)

Групповой сигнал преобразуется в линейный сигнал , передается по линии связи (тракту передачи). На приемной стороне после преобразования линейного сигнала в групповой, последний с помощью полосовых канальных фильтров Ф k с полосой пропускания и демодуляторов преобразуется в канальные сообщения , которые направляются получателю.

Короче говоря, в многоканальных системах с ЧРК каждому каналу отводится определенная часть общей полосы частот группового сигнала. На вход приемного устройства i -го канала одновременно действуют сигналы S i всех N каналов. С помощью частотных фильтров Ф i выделяются лишь те частоты , которые принадлежат данному i -му каналу.

За счет неидеальности характеристик полосовых канальных фильтров возникают взаимные переходные помехи между каналами. Для снижения этих помех приходится вводить защитные частотные интервалы между каналами .

Таким образом

Это означает, что в системах с ЧРК эффективно используется лишь около 80% полосы пропускания тракта передачи. Кроме того, необходимо обеспечить очень высокую степень линейности всего группового тракта.

Временное разделение сигналов (каналов)

При временном способе разделения каналов (ВРК) групповой тракт с помощью синхронных коммутаторов передатчика (К пер ) и приемника (К пр ) поочередно предоставляется для передачи сигналов каждого канала многоканальной системы. (В современной аппаратуре механические коммутаторы практически не используют. Вместо них применяют электронные коммутаторы, выполненные, например, на регистрах сдвига.) При ВРК сначала передается сигнал 1-го канала, затем следующего и т.д. до последнего канала за номером N , после чего опять подключается 1-й канал, и процесс повторяется с частотой дискретизации (рис.9.4).

В качестве канальных сигналов в системах ВРК используются неперекрывающиеся во времени последовательности модулированных импульсов S i (t) ; совокупность канальных импульсов – групповой сигнал S г (t ) передается по линии связи. Действие коммутатора на приемной стороне К пр можно отождествить с ключом, соединяющим линию с приемником i -го канала только на время прохождения импульсов i -го канала (“временной фильтр” Ф i ). После демодуляции сообщения a i (t ) поступают к i -му получателю.

Для нормальной работы многоканальной системы с ВРК необходима синхронная работа коммутаторов на передающей и приемной сторонах. Часто для этого один из каналов занимают под передачу специальных импульсов синхронизации для согласованной во времени работы К пер и К пр.


Рис. 9.5. Временное разделение

двух сигналов с АИМ

На рис. 9.5 представлены временные диаграммы двухканальной системы с АИМ. Переносчиком сообщений здесь являются последовательности импульсов с периодом

, (9.12)

поступа­ющих на импульсный модулятор (ИМ) от генератора тактовых импульсов (ГТИ). Групповой сигнал (рис. 9.5,а) поступает на коммутатор . Последний выполняет роль «временных» пара­метрических фильтров или ключей, передаточная функция которых . (рис. 9.5,б) изменяется синхронно (с периодом ) и синфазно с изменениями передаточной функции :

(9.13)

Это означает, что к тракту передачи в пределах каждого времен­ного интервала подключен только -й импульсный детектор ИД- . Полученные в результате детектирования сообщения поступают к получателю сообщений ПС- .

Оператор , описывающий работу ключевого фильтра, выре­зает из сигнала интервалы , следующие с периодом и отбрасывает остальную часть сигнала.

Здесь, как и ранее, обозначает интервал, в течение которого передаются сигналы -го источника.

При временном разделении взаимные помехи в основном обус­ловлены двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характе­ристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. Действительно, если при переда­че модулированных импульсов конечной длительности ограничить спектр, то импульсы «расплывутся» и вместо импульсов конеч­ной длительности получим процессы, бесконечно протяженные во времени. При временном разделении сигналов это приведет к то­му, что импульсы одного канала будут накладываться на импуль­сы других каналов. Иначе говоря, между каналами воз­никают взаимные переходные помехи или межсимвольная интер­ференция. Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на переда­ющей и приемной сторонах.

Для снижения уровня взаимных помех приходится вводить «защитные» временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в многоканальных системах телефонии полоса эффективно передаваемых частот = 3100 Гц; в соответствии с теоремой Котельникова минимальное значение = 2 = 6200 Гц. Однако в реальных системах частоту следова­ния импульсов выбирают с некоторым запасом: = 8 кГц. Для передачи таких импульсов в одноканальном режиме потребуется полоса частот не менее 4 кГц. При временном разделении кана­лов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельни­кова из соотношения (без учета канала синхронизации)

, (9.14)

где , что совпадает с общей полосой частот системы при частотном разделении.

Хотя теоретически ВРК и ЧРК эквивалентны по эффективности использования частотного спектра, однако в реальных условиях системы ВРК заметно уступают ЧРК по этому показателю из-за трудностей снижения уровня взаимных помех при разделении сигналов. Вместе с тем, неоспоримым преимуществом ВРК является снижение уровня помех нелинейного происхождения за счет разновременности действия импульсов различных каналов, в системах ВРК ниже пик-фактор. Существенно также, что аппаратура ВРК значительно проще аппаратуры ЧРК. Наиболее широкое применение ВРК находит в цифровых системах с ИКМ.

Физический уровень - самый нижний уровень сетевой модели OSI, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы...

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие свойства среды сети передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передачи данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35, RS-232C, RJ-11, RJ-45, разъемы AUI и BNC.

Особенности физического уровня модели OSI удобно рассматривать с использованием следующего рисунка:

Можно выделить следующие подуровни:

Reconciliation - подуровень согласования. Служит для перевода команд МАС-уровня в соответствующие электрические сигналы физического уровня.
MII - Medium Independent Interface, независимый от среды интерфейс. Обеспечивает стандартный интерфейс между МАС-уровнем и физическим уровнем.
PCS - Physical Coding Sublayer, подуровень физического кодирования. Выполняет кодирование и декодирование последовательностей данных из одного представления в другое.
PMA - Physical Medium Attachment, подуровень подсоединения к физической среде. Преобразует данные в битовый поток последовательных электрических сигналов, и обратно. Кроме того, обеспечивает синхронизацию приема/передачи.
PMD - Physical Medium Dependent, подуровень связи с физической средой. Отвечает за передачу сигналов в физической среде (усиление сигнала, модуляция, формирование сигнала).
AN - Auto-negotiation, согласование скорости. Используется для автоматического выбора устройствами протокола взаимодействия.
MDI - Medium Dependent Interface, зависимый от среды интерфейс. Определяет различные виды коннекторов для разных физических сред и PMD-устройств.

Среда передачи данных

Средой передачи данных называется физическая среда, пригодная для прохождения сигнала. Чтобы компьютеры могли обмениваться кодированной информацией, среда должна обеспечить их физическое соединение друг с другом. Существует несколько видов сред, применяемых для соединения компьютеров:
коаксиальный кабель;
неэкранированная витая пара;
экранированная витая пара;
оптоволоконный кабель.

Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля - "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.

Кабель типа "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса - "экранированная витая пара " ("Shielded twisted pair") и "неэкранированная витая пара " ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Канальный уровень

Канальный уровень (англ. Data Link layer) - уровень сетевой модели OSI, который предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы, мосты.

В программировании, к примеру, этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС.

Задача канального уровня - обеспечить взаимодействие устройств внутри локальной сети путем передачи специальных блоков данных, которые называются кадрами (frame). В процессе формирования они снабжаются служебной информацией (заголовком), необходимой для корректной доставки получателю, и, в соответствии с правилами доступа к среде передачи, отправляются на физический уровень.

При приеме данных с уровня PHY необходимо выделить кадры, предназначенные данному устройству, проверить их на отсутствие ошибок, и передать сервису или протоколу, которому они предназначались.

Нужно обратить внимание, что именно канальный уровень отправляет, принимает, и повторяет кадры в случае коллизии. Но определяет состояние разделяемой среды физический уровень. Поэтому процесс доступа (с необходимым уточнением) подробно описан в предыдущей главе.

Информационное взаимодействие на канальном уровне сетей стандарта Ethernet так же, как и на физическом, принято разделять на дополнительные подуровни, которые не были предусмотрены стандартом OSI-7.

LLC (Logical Link Control). Уровень управления логическим каналом;
MAC (Media Access Control). Уровень доступа к среде.

Подуровень MAC

В идеология множественного доступа к среде Ethernet передачу данных приходится реализовать по широковещательному принципу "каждый для всех" (broadcasting). Это не может не наложить отпечаток на процесс формирования и распознавания кадров. Рассмотрим строение кадра Ethernet DIX, как наиболее часто используемого для передачи IP трафика.

Для идентификации устройств используются 6-ти байтовые MAC-адреса, которые отправитель обязательно должен указать в передаваемом кадре. Старшие три байта представляют собой идентификатор производителя оборудования (Vendor codes), младше - индивидуальный идентификатор устройства.

За уникальность последних несет ответственность производитель оборудования. С идентификаторами производителя дело обстоит сложнее. Существует специальная организация в составе IEEE, которая ведет список вендоров, выделяя каждому из них свой диапазон адресов. Кстати, занести туда свою запись стоит совсем не дорого, всего US 50. Можно отметить, что создатели технологии Ethernet, Ксерокс и DEC, занимают первую и последнюю строчку списка соответственно.

Такой механизм существует для того, что бы физический адрес любого устройства был уникальным, и не возникло ситуации его случайного совпадения в одной локальной сети.

Нужно особо отметить, что на большинстве современных адаптеров можно программным путем установить любой адрес. Это представляет определенную угрозу работоспособности сети, и может быть причиной тяжелых "мистических" неисправностей.

MAC-адрес может быть записан в различной форме. Наиболее часто используется шестнадцатеричная, в которой пары байтов отделяются друг от друга символами "-" или ":". Например, сетевая карта Realtek, установленная в моем домашнем компьютере, имеет адрес 00:C0:DF:F7:A4:25.

МАС-адрес позволяет выполнять единичную (Unicast), групповую (Multicast) и широковещательную адресацию кадров (Broadcast).

Единичная адресация означает, что узел-источник направляет свое сообщение только одному получателю, адрес которого явно указывается.

В режиме групповой адресации кадр будет обработан теми станциями, которые имеют такой же Vendor Code, как и у отправителя. Признаком такой посылки является "1" в младшем бите старшего байта МАС-адреса (X1:XX:XX:XX:XX:XX). Такой формат достаточно удобен для "фирменного" взаимодействия устройств, но на практике используется достаточно редко.

Другое дело широковещательная посылка, в которой адрес получателя кодируется специальным значением FF-FF-FF-FF-FF-FF. Переданный пакет будет принят и обработан всеми станциями, которые находятся в локальной сети.

Для успешной доставки одного адреса назначения явно недостаточно. Нужна дополнительная служебная информация - длина поля данных, тип сетевого протокола и др.

Преамбула (Preamble). Состоит из 8 байтов. Первые семь содержат одну и ту же циклическую последовательность битов (10101010), которая хорошо подходит для синхронизации приемопередатчиков. Последний (Start-of-frame-delimiter, SFD), 1 байт (10101011), служит меткой начала информационной части кадра. Это поле не учитывается при определении длины кадра и не рассчитывается в контрольной сумме.
МАС-адрес получателя (Destination Address, DA).
МАС-адрес отправителя (Source Address, SA). Первый бит всегда равен нулю.
Поле длины либо тип данных (Length/Type, L/T). Два байта, которые содержат явное указание длины (в байтах) поля данных в кадре или указывают на тип данных. Ниже, в описании LLC будет показано, что возможно простое автоматическое распознавание разных типов кадров.
Данные (Data). Полезная нагрузка кадра, данные верхних уровней OSI. Может иметь длину от 0 до 1500 байт.
Для корректного распознавания коллизий необходим кадр не менее чем из 64 байт. Если поле данных менее 46 байт, то кадр дополняется полем заполнения (Padding).
Контрольная сумма (Frame Check Sequence, FCS). 4 байта, которые содержит контрольную сумму всех информационных полей кадра. Вычисление выполняется по алгоритму CRC-32 отправителем и добавляется в кадр. После приема кадра в буфер, приемник выполняет аналогичный расчет. В случае расхождения результата вычислений, предполагается ошибка при передаче, и кадр уничтожается.

Подуровень LLC

Данный подуровень обеспечивает единый, независимый от используемого метода доступа, интерфейс с верхним (сетевым) уровнем. По сути, можно сказать, что на нем определяется логическая структура заголовка кадра Ethernet.
...

Сетевые адаптеры

Сетевые адаптеры преобразуют пакеты данных в сигналы для передачи по сети. В ходе изготовления фирмой-производителем каждому сетевому адаптеру присваивается физический адрес, который заносится в специальную микросхему, устанавливаемую на плате адаптера. В большинстве сетевых адаптеров МАС-адрес зашивается в ПЗУ. Когда адаптер инициализируется, этот адрес копируется в оперативную память компьютера. Поскольку МАС-адрес определяется сетевым адаптером, то при замене адаптера изменится и физический адрес компьютера; он будет соответствовать МАС-адресу нового сетевого адаптера.
Для примера можно представить себе гостиницу. Предположим далее, что комната 207 имеет замок, открывающийся ключом А, а комната 410 - замок, открывающийся ключом F. Принято решение поменять замки в комнатах 207 и 410. После замены ключ А будет открывать комнату 410, а ключ F- комнату 207. В этом примере замки играют роль сетевых адаптеров, а ключи - роль МАС-адресов. Если адаптеры поменять местами, то изменятся и МАС-адреса.

ЗЫ. продолжение следует..

------
Основы организации сетей
wiki
nag.ru

Канальный уровень (Data Link Layer) определяет правила доступа к физической среде и управляет передачей информации по каналу, осуществляя формирование сигнала о начале передачи и организуя начало и собственно передачу информации с созданием сигнала окончания передачи и последующим переводом канала в пассивное состояние. В процессе передачи выполняется проверка принимаемой информации и исправление возникающих ошибок, отключение канала при возникновении неисправности, а также формирование сообщений о возникновении неустранимых ошибок для вышестоящего уровня с восстановлением передачи по окончании ремонта техники. В ряде случаев данный уровень осуществляет слежение за скоростью обмена и окончанием информационных блоков, а также управляет физической цепью при ее мультиплексорном использовании.

На физическом уровне просто пересылаются биты и при этом не учитывается, что физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другая задача канального уровня – реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay.

Таким образом, канальный уровень обеспечивает создание, передачу и прием информационных блоков, преобразуя последовательность битовых потоков в наборы битов, называемые кадрами данных, обслуживая запросы сетевого уровня и используя для передачи и приема кадров сервис физического уровня. Первоначально этот уровень был создан как функционально единый уровень, решающий задачи:

При передаче - собственно передачи кадра данных с сетевого уровня на физический уровень и обеспечения безошибочной передачи по физическому уровню кадров с одной системы на другую;


При приеме - перераспределения несмонтированных битов из физического уровня в кадры для более высоких уровней.

Функции канального уровня, как правило, реализуются программно-аппаратно.

Со временем возникла необходимость разделения канального уровня на два подуровня – уровень управления логической связью (Logical Link Control, LLC) и уровень управления доступом к физической среде (Media Access Control, MAC).

Подуровень MAC работает с физическими адресами, которые называются МАС-адресами. В сетях Ethernet и Token Ring МАС-адреса представляют собой шестнадцатиричные числа, записанные в микросхему сетевого адаптера. МАС-адрес сети Ethernet (иногда его называют адресом Ethernet) – это 12 шестнадцатиричных цифр, каждая пара из которых отделена двоеточием. Эти 12 шестнадцатеричных цифр представляют двоичное число длиной 48 бит (или 6 байт). Первые три байта содержат код производителя, присвоенный организацией IEEE. Последние три байта присваиваются производителем. МАС-адрес, или физический адрес, иногда называют адресом устройства. Он отличается от логического адреса,т.е. IP-адреса в сети ТСР/IР тем, что его нельзя изменить. Логический адрес присваивается программным обеспечением, изменить его очень просто. Оба адреса служат для идентификации компьютера в сети.

На подуровне LLC определяется логическая топология сети. Она может не совпадать с физической топологией. Подуровень LLC отвечает за связь (или интерфейс) между подуровнем MAC и расположенным выше сетевым уровнем, преобразуя биты и байты, полученные с уровня MAC, в формат, требуемый сетевым устройствам.



В локальных сетях протоколы канального уровня поддерживаются мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов. В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся "общая шина", "кольцо" и "звезда", а также структуры, полученные из них с помощью мостов и коммутаторов. Во всех этих конфигурациях адрес назначения имеет локальный смысл для данной сети и не изменяется при прохождении кадра от узла-источника к узлу назначения. Возможность передавать данные между локальными сетями разных технологий связана с тем, что в этих технологиях используются адреса одинакового формата, к тому же производители сетевых адаптеров обеспечивают уникальность адресов независимо от технологии. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В территориально-распределенных сетях, т.е. сетях уровня WAN, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка-точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы канального уровня PPP и LAP-B, ответственные за доставку кадра непосредственному узлу-соседу. Адрес в этом случае не имеет принципиального значения, а на первый план выходит способность протокола восстанавливать искаженные и утерянные кадры, так как плохое качество территориальных каналов, особенно коммутируемых телефонных, часто требует выполнения подобных действий.

Если же перечисленные выше условия не соблюдаются, например связи между сегментами Ethernet имеют петлевидную структуру, либо объединяемые сети используют различные способы адресации, как в сетях Ethernet и X.25, то протокол канального уровня не может в одиночку справиться с задачей передачи кадра между узлами и требует помощи протокола сетевого уровня. Именно так организованы сети X.25. Таким образом, когда в сетях уровня WAN функции канального уровня в чистом виде выделить трудно, то они объединяются с функциями сетевого уровня в одном и том же протоколе. Примерами такого подхода могут служить протоколы технологий ATM и frame relay.

На канальном уровне используются такие протоколы, как широко известный для последовательных соединений протокол ISO High-level DataLink Conrol (HDLC), протоколы ITU-T Link Access Procedures Balanced (LAPB), Link Access Procedures on the D-channel (LAPD) и Link Access Procedures to Frame Mode Bearer Services (LAPF), протоколы IEEE 802.2 LLC (тип I и тип II), обеспечивающий MAC для сред локальных сетей 802.Х, а также протоколы Ethernet, Token ring, FDDI, X.25 и FR.

В целом канальный уровень представляет весьма мощный и законченный набор функций по пересылке сообщений между узлами сети, допуская в ряде случаев работу поверх него непосредственно протоколов прикладного уровня или приложений без привлечения протоколов сетевого и транспортного уровней. Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня недостаточно. Для этого следует использовать в рамках модели OSI следующие два уровня модели - сетевой и транспортный .

Рассмотрим в данной статье основные методы коммутации в сетях.

В традиционных телефонных сетях, связь абонентов между собой выполняется с помощью коммутации каналов связи. В начале коммутация телефонных каналов связи выполнялась вручную, далее коммутацию выполняли автоматические телефонные станции (АТС).

Аналогичный принцип используется и в вычислительных сетях. В качестве абонентов выступают территориально удаленные вычислительные машины в компьютерной сети. Физически не представляется возможным предоставить каждому компьютеру свою собственную некоммутируемую линию связи, которой они пользовались бы в течении всего времени. Поэтому практически во всех компьютерных сетях всегда используется какой-либо способ коммутации абонентов (рабочих станций), выполняющий возможность доступа к существующим каналам связи для нескольких абонентов, для обеспечения одновременно нескольких сеансов связи.

Коммутация - это процесс соединения различных абонентов коммуникационной сети через транзитные узлы. Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники.

Рабочие станции подключаются к коммутаторам с помощью индивидуальных линий связи, каждая из которых используется в любой момент времени только одним, закрепленным за этой линией, абонентом. Коммутаторы соединяются между собой с использованием разделяемых линии связи (используются совместно несколькими абонентами).

Рассмотрим три основные наиболее распространенные способы коммутации абонентов в сетях:

  • коммутация каналов (circuit switching);
  • коммутация пакетов (packet switching);
  • коммутация сообщений (message switching).

Коммутация каналов

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Время передачи сообщения при этом определяется пропускной способностью канала, длинной связи и размером сообщения.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

Достоинства коммутации каналов:

  • постоянная и известная скорость передачи данных;
  • правильная последовательность прихода данных;
  • низкий и постоянный уровень задержки передачи данных через сеть.

Недостатки коммутации каналов:

  • возможен отказ сети в обслуживании запроса на установление соединения;
  • нерациональное использование пропускной способности физических каналов, в частности невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей;
  • обязательная задержка перед передачей данных из-за фазы установления соединения.

Коммутация сообщений – разбиение информации на сообщения, каждый из которых состоит из заголовка и информации.

Это способ взаимодействия, при котором создается логический канал, путем последовательной передачи сообщений через узлы связи по адресу указанному в заголовке сообщения.

При этом каждый узел принимает сообщение, записывает в память, обрабатывает заголовок, выбирает маршрут и выдает сообщение из памяти в следующий узел.

Время доставки сообщения определяется временем обработки в каждом узле, числом узлов и пропускной способности сети. Когда заканчивается передача информации из узла А в узел связи В, то узел А становится свободным и может участвовать в организации другой связи между абонентами, поэтому канал связи используется более эффективно, но система управления маршрутизации будет сложной.
Сегодня коммутация сообщений в чистом виде практически не существует.

Коммутация пакетов - это особый способ коммутации узлов сети, который специально создавался для наилучшей передачи компьютерного трафика (пульсирующего трафика). Опыты по разработке самых первых компьютерных сетей, в основе которых лежала техника коммутации каналов, показали, что этот вид коммутации не предоставляет возможности получить высокую пропускную способность вычислительной сети. Причина крылась в пульсирующем характере трафика, который генерируют типичные сетевые приложения.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Необходимо уточнить, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт (EtherNet). Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета.

Достоинства коммутации пакетов:

  • более устойчива к сбоям;
  • высокая общая пропускная способность сети при передаче пульсирующего трафика;
  • возможность динамически перераспределять пропускную способность физических каналов связи.

Недостатки коммутации пакетов:

  • неопределенность скорости передачи данных между абонентами сети;
  • переменная величина задержки пакетов данных;
  • возможны потери данных из-за переполнения буферов;
  • возможны нарушения последовательности прихода пакетов.

В компьютерных сетях применяется коммутация пакетов.

Cпособы передачи пакетов в сетях:

  • Дейтаграммный способ – передача осуществляется как совокупность независимых пакетов. Каждый пакет двигается по сети по своему маршруту и пользователю пакеты поступают в произвольном порядке.
    • Достоинства: простота процесса передачи.
    • Недостатки: низкая надежность засчет возможности потери пакетов и необходимость программного обеспечения для сборки пакетов и восстановления сообщений.
  • Логический канал - это передача последовательности связанных в цепочки пакетов, сопровождающихся установкой предварительного соединения и подтверждением приема каждого пакета. Если i-ый пакет не принят, то все последующие пакеты не будут приняты.
  • Виртуальный канал – это логический канал с передачей по фиксированному маршруту последовательности связанных в цепочки пакетов.
    • Достоинства: сохраняется естественная последовательность данных; устойчивые пути следования трафика; возможно резервирование ресурсов.
    • Недостатки: сложность аппаратной части.

В данной статье мы рассмотрели основные методы коммутации в вычислительных сетях, с описание каждого метода коммутации с указанием достоинст и недостатков.

(двухузловой).

Канальный уровень отвечает за доставку кадров между устройствами, подключенными к одному сетевому сегменту. Кадры канального уровня не пересекают границ сетевого сегмента. Межсетевая маршрутизация и глобальная адресация это функция более высокого уровня, что позволяет протоколам канального уровня сосредоточиться на локальной доставке и адресации.

Заголовок кадра содержит аппаратные адреса отправителя и получателя, что позволяет определить, какое устройство отправило кадр и какое устройство должно получить и обработать его. В отличие от иерархических и маршрутизируемых адресов, аппаратные адреса одноуровневые. Это означает, что никакая часть адреса не может указывать на принадлежность к какой либо логической или физической группе.

Когда устройства пытаются использовать среду одновременно, возникают коллизии кадров. Протоколы канального уровня выявляют такие случаи и обеспечивают механизмы для уменьшения их количества или же их предотвращения.

Многие протоколы канального уровня не имеют подтверждения о приёме кадра, некоторые протоколы даже не имеют контрольной суммы для проверки целостности кадра. В таких случаях, протоколы более высокого уровня должны обеспечивать управление потоком данных, контроль ошибок, подтверждение доставки и ретрансляции утерянных данных.

Стандарты и протоколы передачи данных

  • Econet,
  • Ethernet Automatic Protection Switching (EAPS),
  • IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers),
  • Link Access Procedures, D channel (LAPD),
  • LocalTalk,
  • Multiprotocol Label Switching (MPLS),
  • Serial Line Internet Protocol (SLIP) (obsolete),

В программировании доступ к этому уровеню предоставляет драйвер сетевой платы. В операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS . [значимость факта? ]


Wikimedia Foundation . 2010 .

Смотреть что такое "Канальный уровень" в других словарях:

    канальный уровень - Второй уровень эталонной модели ISO/OSI, обеспечивающий базовые коммуникационные сервисы. Канальный уровень CAN определяет кадры данных, удаленного запроса, ошибки и перегрузки. … …

    канальный уровень стека связи (сети и системы связи) - Уровень канала передачи данных. [ГОСТ Р 54325 2011 (IEC/TS 61850 2:2003)] EN data link layer layer 2 of the OSI reference model for Open Systems Interconnection, responsible for the transmission of data over a physical medium. After establishment … Справочник технического переводчика

    канальный уровень сетевого протокола - — Тематики электросвязь, основные понятия EN link layer of network protocol function … Справочник технического переводчика

    уровень канала передачи данных - канальный уровень уровень звена данных — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы канальный уровеньуровень звена данных EN data link layer… … Справочник технического переводчика

    уровень звена данных - Ндп. канальный уровень Уровень взаимосвязи открытых систем, обеспечивающий услуги по обмену данными между логическими объектами сетевого уровня, протокол управления звеном данных, формирование и передачу кадров данных [ГОСТ 24402 88] Недопустимые … Справочник технического переводчика

    В модели OSI набор структур и программ, обеспечивающих обработку определенного класса событий. Уровень выступает единицей декомпозиции совокупности функций, обеспечивающих информационное взаимодействие прикладных процессов. В модели OSI выделяют… … Финансовый словарь

    Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к… … Википедия

    Уровень звена данных - 26. Уровень звена данных Ндп. Канальный уровень Data link layer Уровень взаимосвязи открытых систем, обеспечивающий услуги по обмену данными между логическими объектами сетевого уровня, протокол управления звеном данных, формирование и передачу… … Словарь-справочник терминов нормативно-технической документации

    - (англ. Session layer) 5 й уровень сетевой модели OSI, отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией,… … Википедия